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DAVID STAPLETON

1. Monodromy and Lefschetz pencils

These notes are based on [Voi03, Ch. 2&3] and [Huy23, §1.2]. See the
disclaimer section.

Recall U = U(d,n) = PN(n,d) ∖D(d,n) is the set of smooth hypersurfaces.
Today we want to study the topology of the family:

πU ∶XU → U.

Definition 1.1. Let Λ be an abelian group and let X be a locally con-
nected space. A local system with stalk Λ is a sheaf L which is locally
isomorphic to the constant sheaf with stalk Λ.

Example 1.2. Here’s an example with B = S1 and Λ = Z3.

We consider Λ as having the discrete topology. On the left, the trivial local
system Z3 can be considered to be locally constant sections of S1 ×Λ. On
the right, we quotient by the diagonal action of µ2 on S1 × Z3, and the
sheaf on S1 is locally constant sections of (S1 ×Z3)/µ2 → S1/µ2 ≃ S1.

Lemma 1.3 (Ehresmann’s Lemma). Any smooth projective family of
complex varieties

π∶X → B

is locally constant. In other words, for small enough open sets p ∈ ∆ ⊆ B
we have X∆ ≃Xp ×∆.

Corollary 1.4. In the analytic topology, if B is connected then Rmπ∗ZX

is a local system on B with stalk Hm(Xb,ZX) (for any b ∈ B).
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Remark 1.5. We can take inverse images of local systems. Moreover,
the geometric local systems described in the Corollary respect the cup
product.

Exercise 1. (1) Show that a local system on [0,1] is trivial.
(2) Show that any local system L on B × [0,1] is isomorphic to the

inverse image: p−1
1 (L∣B×0).

(3) Given a local system L on B, conclude that for any 2 homotopic
paths between x, y ∈ B:

γ1, γ2∶ [0,1]→ B

there is an induced ismorphism Lx ≃ Ly which is independent of
the choice of path.

Proposition 1.6. If B is simply connected (and locally arcwise con-
nected), then every local system L (with stalk Λ) is trivial on B.

Proof. Fix a basepoint x ∈ B, let y ∈ B be any other point and let

γ∶ [0,1]→ B

be a path from x to y. By Exercise 1, γ−1L is trivial on [0,1] and this
gives an isomorphism:

Lx ≃ Ly
Also by the exercise, this isomorphism is independent of the path.

So for any two points x, y ∈ B there is a natural isomorphism:

Lx ≃ Ly. (⋆)

It makes sense then to ask: are these isomorphisms locally constant? (E.g.
if the group Λ is not discrete, as can happen, we might worry these iso-
morphisms vary continuously.)

We’ll be a little sketchy here. Let P be the space of paths on B. There is
a canonical map:

Γ∶P × [0,1]→ B

sending γ × t ↦ γ(t). By the exercise (and some unwinding) we get an
isomorphism of local systems:

Γ−1
0 L ≃ Γ−1

1 L

(where Γt represents the composition P → P × {t} → P × [0,1] ΓÐ→ B).
Pointwise this isomorphism of local systems is given by the isomorphism:

Lγ(0) ≃ Lγ(1)
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described previously. The fact that this is now an isomorphism of local
systems, implies that the isomorphisms (⋆) vary continuously. (The con-
dition locally arcwise connected implies that the maps Γt are open, which
is useful in proving the sketchy part.) �

Theorem 1.7. Let B be a locally simply connected (and arcwise con-
nected) space with basepoint x ∈ B. Fix a group Λ. There is a bijection:

{ local systems on B with group
Λ plus a choice of Λ ≃ Lx }↔ { representations

π1(B,x)→ Aut(Λ) }

Remark 1.8. So, our short-term goal then will be to understand the
representation

π1(U, [X])→ Aut(Hn(X,Z)).

Proof. Let L be a local system on B with stalk Λ and choose an isomor-
phism:

α∶Lx ≃ Λ.

Consider the universal cover

µ∶ B̃ → B.

Then, by Proposition 1, µ−1L is locally constant. Moreover, for any chosen
point x′ ∈ B̃ over x ∈ B, there is a unique isomorphism β∶µ−1L ≃ Λ so that
the induced isomorphism:

(µ−1L)x′
βx′Ð→ Λ

equals the isomorphism:

(µ−1L)x′ ≃ Lx
αx′Ð→ Λ.

For any γ ∈ π1(B,x), γ ⋅x′ ∈ B̃ also maps to x ∈ B. The same isomorphism
β gives an isomorphism:

µ−1Ly
βγ⋅x′ÐÐ→ Λ,

but we no longer necessarily have that:

Λ
β−1
γ⋅x′ÐÐ→ µ−1Ly ≃ Lx

αÐ→ Λ

is the identity. Let ρ(γ) denote this composition. Then:

ρ∶π1(X,x)→ Aut(Λ)
is the associated group homomorphism (we omit the proof that the map
respects composition). This shows that local systems give rise to π1-
representations.
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In the reverse direction, we start with a representation

ρ∶π1(B,x)→ Λ.

Note that π1(B,x) acts freely on B′ with quotient B. The local system
Lρ on B assigns to each open set U ⊆ B the set of equivariant sections of
Λ on π−1(U):

Lρ(U) = {s ∈ ΛB′(µ−1U)∣ρ(γ) ○ s = s ○ γ ∀γ ∈ π1(B,x)} .

�

Remark 1.9. The representation associated to a local system is called
the monodromy representation. It is very reasonable to think of a local
system as a sheaf that has parallel transport. Following a loop in the base,
the parallel transport map induces the representation.

Definition 1.10. Recall, a Lefschetz pencil of degree d hypersurface in
Pn+1 is a pencil C2 ≃ λ ⊆ H0(P,OP(d)) such that

(1) the base locus of λ has codimension 2 in P, and
(2) any singular hypersuface λ has a single singular point which is an

ordinary double point.

Remark 1.11. Here’s a cartoon of a Lefschetz pencil of quadrics.

The singular points form a finite subset of P1.
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Previously we showed there are (d − 1)n+1(n + 2) singular points Σ ⊆ P1.
Computing the monodromy of a Lefschetz pencil means computing the
monodromy action for the family:

XP1∖Σ → (P1 ∖Σ).

As π1(P1 ∖ Σ) is generated by the loops in the picture, it amounts to
understanding how these loops act on cohomology.

Definition 1.12. A Lefschetz degeneration is a map

f ∶Y →∆ ⊆ C

where Y is a smooth, n+1 dimensional (analytic) variety, f is a projective
morphism, smooth away from 0 ∈ ∆ such that the fiber Y0 has a single
singularity which is an ordinary double point.

Remark 1.13. So it’s like a tiny neighborhood of a singular point in a
Lefschetz pencil.

Theorem 1.14 (Picard-Lefschetz formula). Let f ∶Y →∆ be a Lefschetz
degeneration. Let T ∈ Aut(Hn(Y1,Z)) be the image of a generator of
π1(∆∗,1). There exists a class δ ∈ Hn(Y1,Z) (called a vanishing sphere)
such that for every α ∈ Hn(Y1,Z),

T = α + εn(⟨α, δ⟩)δ.

(Here εn = −(−1)n(n−1)2 and ⟨−,−⟩ is the intersection product)

Example 1.15. Consider the elliptic curve:

y2 = (x2 − t)(x − 1).

(for t small). This has a double root when t = 0, and we want to consider
the monodromy around the loop t = εeiθ.
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In this case the green loop is the vanishing sphere δ, because as t = 0,
δ becomes homologous to 0. We see that the magenta loop maps to the
green loop under the monodromy representation. Note, that Ehresmann’s
lemma also gives rise to a diffeomorphism of the torus (that depends on
some trivialization choices). The diffeomorphism here is called a Dehn
twist.

Remark 1.16. The vanishing sphere in the Picard-Lefschetz formula is
defined in several steps.

(1) Analytic locally, the map f looks like:

Cn+1 →C (z1, . . . , zn)↦ z2
1 +⋯ + z2

n.

at the singular point in the fiber.
(2) If B ⊆ Cn+1 is a ball of radius r, then for t = seiθ small, the fiber

Bt contains the sphere

Sn = {(z1, . . . , zn, zn+1) ∈ B∣zi =
√
seiθxi, xi ∈ R,∑x2

i = 1.}.
Note that as t→ 0, this sphere shrinks to 0. The claim here is that
the fiber Bt deformation retracts onto the sphere Sn−1. (See the
picture in the example above.)

(3) For the Lefschetz degeneration: f ∶Y → ∆, the fundamental class
of Sn−1 (choosing an orientation) generates the kernel of the com-
position:

Hn(Yε,Z) ≃ Hn(Yε,Z)→ Hn(Y,Z).
The class δ is this generator in Hn(Yε,Z) ≃ H(Y1,Z).
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Definition 1.17. For a smooth projective family X → B with marked
fiber X, the mth monodromy group is defined to be the image of the
monodromy representation:

π1(B)→ Aut(Hm(X,Z)).
When XU(d,n) → U(d,n) is the universal family, we set

Γ(d,n) = Im(π1(U(d,n))→ Aut(Hn(X,Z))).
Theorem 1.18. Restricting to the case of cubic hypersurfaces, the mon-
odromy group Γ(3, n) of the universal smooth cubic is

Γ(3, n) = {Õ
+(Hn(X,Z)) if n is even

SpO(Hn(X,Z), q) if n is odd

Remark 1.19. I won’t define these groups precisely. Note there is a
natural intersection bilinear form on Hn(X,Z), which is preserved by
the monodromy action. The bilinear form is symmetric when n is even
and alternating when n is odd. This explains the O and the Sp.

Moreover, in the case n is even, the hyperplane class hn/2 is a monodromy
invariant of Hn(X,Z). It follows that there is a representation:

π1(U(d,n))→ Aut(Hn(X,Z)prim),
and Õ+(Hn(X,Z)) is a finite index subgroup of O(Hn(X,Z)prim). (In fact,
Hn(X,Z) /≃ Hn(X,Z)prim ⊕Zhn/2 as lattices, and this accounts – to some
extent – for why it is only a finite index subgroup.)

In the caes n is odd, there is a Z2-valued quadratic form (Kervaire in-
variant? ) in the picture, and that is the reason for the O.

Big points in the Proof of Theorem. We proceed in a few steps:

(1) First show that for a Lefschetz pencil P1 ⊆ PN(n,d) with singular-
ities Σ ⊆ P1, the mapping:

π(P1 ∖Σ)→ π1(U(n, d)).
So the monodromy group of U(n, d) is the same as the monodromy
group of the Lefschetz pencil.

(2) The punchline here is that (for hypersufaces) the primitive coho-
mology is generated by the vanishing spheres. In a sentence, this
is an application of Morse Theory / the Lefschetz theorems.

(3) Presumably, then some computation is necessary. I do not know
the details of this computation. I assume it is proved that the sim-
ple loops from the Lefschetz pencil generate these groups directly
(by explicitly describing these groups).
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�

Theorem 1.20. The monodromy representation

Γ(d,n)→ Aut(Hn(X,Q)prim)

is irreducible.

Proof. Again we consider the case of a Lefschetz pencil. We need a couple
of facts. First the pairing on Hn(X,Q)prim is non-degenerate and second
the vanishing spheres δi generate the primitive cohomology.

Suppose that F ⊆ Hn(X,Q)prim is a non-zero subrepresentation. Let α ∈ F
be any vector. Then for the loop γi ∈ π1(P1 ∖Σ) we have:

ρ(γi)(α) = α ± ⟨α, δi⟩δi.

There exists some δi such that ⟨α, δi⟩ ≠ 0. So:

±⟨α, δi⟩δi = α − ρ(γi)(α) ∈ F (Ô⇒ δi ∈ F ).

Now we want to show that the monodromy action acts transitively on the
vanishing spheres, at least up to sign. More globally, a vanishing sphere
can be constructed as follows. Let 0 ∈ U(d,n) be a marked point in the
space of smooth hypersurfaces.

(1) Choose a point y ∈D(d,n)0 (the smooth locus of the discriminant
divisor), and make a small normal disk ∆y ⊆ PN(d,n) to D(d,n) at
y. Choose a point y′ ∈ ∆∗

y .
(2) Choose a path γ from 0 to y′.

Then we get a vanishing sphere by choosing a generator of the kernel of
the composition:

Hn(X0,Z) ρ(γ)ÐÐ→ Hn(Xy′ ,Z) ≃ Hn(Xy′ ,Z)→ Hn(X∆y ,Z).

We can call such a vanishing sphere δγ,y (and let’s denote the composition
φγ,y). Note that all vanishing spheres arise this way.

First, different choices of paths (up to homotopy) differ by pre-composing
with an element in γ′ ∈ π1(U(d,n)). The vanishing sphere obtained by
this different vector is given by a generator of the kernel of the map
φγ,y ○ ρ(γ′). Thus:

δγ○γ′,y = ρ(γ′−1) ○ δγ,y.
So we see that monodromy can be used to transport one vanishing sphere
at y to another.
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Finally, we must consider what happens when we choose a different point
z ∈ D(d,n)0 and ANY path 0 → z′. Now D(d,n)0 is irreducible, so we
choose a path γy→z ∈ D(d,n)0 from y → z and we may make a tubular
neighborhood and use it to construct a path γ∶ y′ → z′.

The claim is that
ker(φγ,y) = ker(φ(γy′→z′○γ),z).

which shows δγ,y = δγy′→z′○γ,z. �

Remark 1.21. In the case of cubic surfaces, we have H2(X,C) = H1,1(X).
It follows by the Hodge index theorem that the primitive cohomology is
a negative definite lattice. As a consequence, there are only finitely many
automorphisms of the lattice: H2(X,Z)prim (choose any basis {βi}, there
are only finitely many elements α ∈H2(X,Z)prim with

∣⟨α,α⟩∣ < max{∣⟨βi, βi⟩∣}).
This shows that Γ(3,2) is finite, and in fact Γ(3,2) =W (E6)!
Exercise 2. In the case n = 0 and d = 3, prove that the monodromy
group of the family XU(3,0) → U(3,0) ⊆ P3 is S3. The discriminant locus
D(3,0) ⊆ P3 is singular along a curve. What is this curve (and prove your
answer)?
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