MATH 732: CUBIC HYPERSURFACES

DAVID STAPLETON

1. Monodromy and Lefschetz pencils

These notes are based on [Voi03, Ch. 2\&3] and [Huy23, §1.2]. See the disclaimer section.
Recall $U=U(d, n)=\mathbf{P}^{N(n, d)} \backslash D(d, n)$ is the set of smooth hypersurfaces. Today we want to study the topology of the family:

$$
\pi_{U}: \mathcal{X}_{U} \rightarrow U
$$

Definition 1.1. Let Λ be an abelian group and let X be a locally connected space. A local system with stalk Λ is a sheaf L which is locally isomorphic to the constant sheaf with stalk Λ.

Example 1.2. Here's an example with $B=S^{1}$ and $\Lambda=\mathbf{Z}_{3}$.

We consider Λ as having the discrete topology. On the left, the trivial local system \mathbf{Z}_{3} can be considered to be locally constant sections of $S^{1} \times \Lambda$. On the right, we quotient by the diagonal action of μ_{2} on $S^{1} \times \mathbf{Z}_{3}$, and the sheaf on S^{1} is locally constant sections of $\left(S^{1} \times \mathbf{Z}_{3}\right) / \mu_{2} \rightarrow S^{1} / \mu_{2} \simeq S^{1}$.

Lemma 1.3 (Ehresmann's Lemma). Any smooth projective family of complex varieties

$$
\pi: X \rightarrow B
$$

is locally constant. In other words, for small enough open sets $p \in \Delta \subseteq B$ we have $X_{\Delta} \simeq X_{p} \times \Delta$.

Corollary 1.4. In the analytic topology, if B is connected then $\mathrm{R}^{m} \pi_{*} \mathbf{Z}_{X}$ is a local system on B with stalk $\mathrm{H}^{m}\left(X_{b}, \mathbf{Z}_{X}\right)$ (for any $b \in B$).

Remark 1.5. We can take inverse images of local systems. Moreover, the geometric local systems described in the Corollary respect the cup product.

Exercise 1. (1) Show that a local system on $[0,1]$ is trivial.
(2) Show that any local system L on $B \times[0,1]$ is isomorphic to the inverse image: $p_{1}^{-1}\left(\left.L\right|_{B \times 0}\right)$.
(3) Given a local system L on B, conclude that for any 2 homotopic paths between $x, y \in B$:

$$
\gamma_{1}, \gamma_{2}:[0,1] \rightarrow B
$$

there is an induced ismorphism $L_{x} \simeq L_{y}$ which is independent of the choice of path.
Proposition 1.6. If B is simply connected (and locally arcwise connected), then every local system L (with stalk Λ) is trivial on B.

Proof. Fix a basepoint $x \in B$, let $y \in B$ be any other point and let

$$
\gamma:[0,1] \rightarrow B
$$

be a path from x to y. By Exercise $1, \gamma^{-1} L$ is trivial on $[0,1]$ and this gives an isomorphism:

$$
L_{x} \simeq L_{y}
$$

Also by the exercise, this isomorphism is independent of the path.
So for any two points $x, y \in B$ there is a natural isomorphism:

$$
L_{x} \simeq L_{y}
$$

It makes sense then to ask: are these isomorphisms locally constant? (E.g. if the group Λ is not discrete, as can happen, we might worry these isomorphisms vary continuously.)
We'll be a little sketchy here. Let P be the space of paths on B. There is a canonical map:

$$
\Gamma: P \times[0,1] \rightarrow B
$$

sending $\gamma \times t \mapsto \gamma(t)$. By the exercise (and some unwinding) we get an isomorphism of local systems:

$$
\Gamma_{0}^{-1} L \simeq \Gamma_{1}^{-1} L
$$

(where Γ_{t} represents the composition $P \rightarrow P \times\{t\} \rightarrow P \times[0,1] \xrightarrow{\Gamma} B$). Pointwise this isomorphism of local systems is given by the isomorphism:

$$
L_{\gamma(0)} \simeq L_{\gamma(1)}
$$

described previously. The fact that this is now an isomorphism of local systems, implies that the isomorphisms (\star) vary continuously. (The condition locally arcwise connected implies that the maps Γ_{t} are open, which is useful in proving the sketchy part.)

Theorem 1.7. Let B be a locally simply connected (and arcwise connected) space with basepoint $x \in B$. Fix a group Λ. There is a bijection:

$$
\left\{\begin{array}{c}
\text { local systems on } B \text { with group } \\
\Lambda \text { plus a choice of } \Lambda \simeq L_{x}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { representations } \\
\pi_{1}(B, x) \rightarrow \operatorname{Aut}(\Lambda)
\end{array}\right\}
$$

Remark 1.8. So, our short-term goal then will be to understand the representation

$$
\pi_{1}(U,[X]) \rightarrow \operatorname{Aut}\left(\mathrm{H}^{n}(X, \mathbf{Z})\right) .
$$

Proof. Let L be a local system on B with stalk Λ and choose an isomorphism:

$$
\alpha: L_{x} \simeq \Lambda .
$$

Consider the universal cover

$$
\mu: \widetilde{B} \rightarrow B .
$$

Then, by Proposition 1, $\mu^{-1} L$ is locally constant. Moreover, for any chosen point $x^{\prime} \in \widetilde{B}$ over $x \in B$, there is a unique isomorphism $\beta: \mu^{-1} L \simeq \Lambda$ so that the induced isomorphism:

$$
\left(\mu^{-1} L\right)_{x^{\prime}} \xrightarrow{\beta_{x^{\prime}}} \Lambda
$$

equals the isomorphism:

$$
\left(\mu^{-1} L\right)_{x^{\prime}} \simeq L_{x} \xrightarrow{\alpha_{x^{\prime}}} \Lambda .
$$

For any $\gamma \in \pi_{1}(B, x), \gamma \cdot x^{\prime} \in \widetilde{B}$ also maps to $x \in B$. The same isomorphism β gives an isomorphism:

$$
\mu^{-1} L_{y} \xrightarrow{\beta_{\gamma \cdot x^{\prime}}} \Lambda,
$$

but we no longer necessarily have that:

$$
\Lambda \xrightarrow{\beta_{\gamma \cdot x}^{-1}} \mu^{-1} L_{y} \simeq L_{x} \xrightarrow{\alpha} \Lambda
$$

is the identity. Let $\rho(\gamma)$ denote this composition. Then:

$$
\rho: \pi_{1}(X, x) \rightarrow \operatorname{Aut}(\Lambda)
$$

is the associated group homomorphism (we omit the proof that the map respects composition). This shows that local systems give rise to $\pi_{1^{-}}$ representations.

In the reverse direction, we start with a representation

$$
\rho: \pi_{1}(B, x) \rightarrow \Lambda .
$$

Note that $\pi_{1}(B, x)$ acts freely on B^{\prime} with quotient B. The local system L_{ρ} on B assigns to each open set $U \subseteq B$ the set of equivariant sections of Λ on $\pi^{-1}(U)$:

$$
L_{\rho}(U)=\left\{s \in \Lambda_{B^{\prime}}\left(\mu^{-1} U\right) \mid \rho(\gamma) \circ s=s \circ \gamma \quad \forall \gamma \in \pi_{1}(B, x)\right\} .
$$

Remark 1.9. The representation associated to a local system is called the monodromy representation. It is very reasonable to think of a local system as a sheaf that has parallel transport. Following a loop in the base, the parallel transport map induces the representation.

Definition 1.10. Recall, a Lefschetz pencil of degree d hypersurface in \mathbf{P}^{n+1} is a pencil $\mathbf{C}^{2} \simeq \lambda \subseteq \mathrm{H}^{0}\left(\mathbf{P}, \mathcal{O}_{\mathbf{P}}(d)\right)$ such that
(1) the base locus of λ has codimension 2 in \mathbf{P}, and
(2) any singular hypersuface λ has a single singular point which is an ordinary double point.

Remark 1.11. Here's a cartoon of a Lefschetz pencil of quadrics.

The singular points form a finite subset of \mathbf{P}^{1}.

Previously we showed there are $(d-1)^{n+1}(n+2)$ singular points $\Sigma \subseteq \mathbf{P}^{1}$. Computing the monodromy of a Lefschetz pencil means computing the monodromy action for the family:

$$
X_{\mathbf{P}^{1} \backslash \Sigma} \rightarrow\left(\mathbf{P}^{1} \backslash \Sigma\right)
$$

As $\pi_{1}\left(\mathbf{P}^{1} \backslash \Sigma\right)$ is generated by the loops in the picture, it amounts to understanding how these loops act on cohomology.

Definition 1.12. A Lefschetz degeneration is a map

$$
f: Y \rightarrow \Delta \subseteq \mathbf{C}
$$

where Y is a smooth, $n+1$ dimensional (analytic) variety, f is a projective morphism, smooth away from $0 \in \Delta$ such that the fiber Y_{0} has a single singularity which is an ordinary double point.

Remark 1.13. So it's like a tiny neighborhood of a singular point in a Lefschetz pencil.

Theorem 1.14 (Picard-Lefschetz formula). Let $f: Y \rightarrow \Delta$ be a Lefschetz degeneration. Let $T \in \operatorname{Aut}\left(\mathrm{H}^{n}\left(Y_{1}, \mathbf{Z}\right)\right)$ be the image of a generator of $\pi_{1}\left(\Delta^{*}, 1\right)$. There exists a class $\delta \in \mathrm{H}^{n}\left(Y_{1}, \mathbf{Z}\right)$ (called a vanishing sphere) such that for every $\alpha \in \mathrm{H}^{n}\left(Y_{1}, \mathbf{Z}\right)$,

$$
T=\alpha+\epsilon_{n}(\langle\alpha, \delta\rangle) \delta .
$$

(Here $\epsilon_{n}=-(-1)^{\frac{n(n-1)}{2}}$ and $\langle-,-\rangle$ is the intersection product)

Example 1.15. Consider the elliptic curve:

$$
y^{2}=\left(x^{2}-t\right)(x-1) .
$$

(for t small). This has a double root when $t=0$, and we want to consider the monodromy around the loop $t=\epsilon e^{i \theta}$.

In this case the green loop is the vanishing sphere δ, because as $t=0$, δ becomes homologous to 0 . We see that the magenta loop maps to the green loop under the monodromy representation. Note, that Ehresmann's lemma also gives rise to a diffeomorphism of the torus (that depends on some trivialization choices). The diffeomorphism here is called a Dehn twist.

Remark 1.16. The vanishing sphere in the Picard-Lefschetz formula is defined in several steps.
(1) Analytic locally, the map f looks like:

$$
\mathbf{C}^{n+1} \rightarrow \mathbf{C} \quad\left(z_{1}, \ldots, z_{n}\right) \mapsto z_{1}^{2}+\cdots+z_{n}^{2}
$$

at the singular point in the fiber.
(2) If $B \subseteq \mathbf{C}^{n+1}$ is a ball of radius r, then for $t=s e^{i \theta}$ small, the fiber B_{t} contains the sphere

$$
S^{n}=\left\{\left(z_{1}, \ldots, z_{n}, z_{n+1}\right) \in B \mid z_{i}=\sqrt{s} e^{i \theta} x_{i}, x_{i} \in \mathbf{R}, \sum x_{i}^{2}=1 .\right\}
$$

Note that as $t \rightarrow 0$, this sphere shrinks to 0 . The claim here is that the fiber B_{t} deformation retracts onto the sphere S^{n-1}. (See the picture in the example above.)
(3) For the Lefschetz degeneration: $f: Y \rightarrow \Delta$, the fundamental class of S^{n-1} (choosing an orientation) generates the kernel of the composition:

$$
\mathrm{H}^{n}\left(Y_{\epsilon}, \mathbf{Z}\right) \simeq \mathrm{H}_{n}\left(Y_{\epsilon}, \mathbf{Z}\right) \rightarrow \mathrm{H}_{n}(Y, \mathbf{Z})
$$

The class δ is this generator in $\mathrm{H}^{n}\left(Y_{\epsilon}, \mathbf{Z}\right) \simeq \mathrm{H}\left(Y_{1}, \mathbf{Z}\right)$.

Definition 1.17. For a smooth projective family $X \rightarrow B$ with marked fiber X, the mth monodromy group is defined to be the image of the monodromy representation:

$$
\pi_{1}(B) \rightarrow \operatorname{Aut}\left(\mathrm{H}^{m}(X, \mathbf{Z})\right)
$$

When $X_{U(d, n)} \rightarrow U(d, n)$ is the universal family, we set

$$
\Gamma(d, n)=\operatorname{Im}\left(\pi_{1}(U(d, n)) \rightarrow \operatorname{Aut}\left(\mathrm{H}^{n}(X, \mathbf{Z})\right)\right)
$$

Theorem 1.18. Restricting to the case of cubic hypersurfaces, the monodromy group $\Gamma(3, n)$ of the universal smooth cubic is

$$
\Gamma(3, n)= \begin{cases}\widetilde{O}^{+}\left(\mathrm{H}^{n}(X, \mathbf{Z})\right) & \text { if } n \text { is even } \\ \operatorname{SpO}\left(\mathrm{H}^{n}(X, \mathbf{Z}), q\right) & \text { if } n \text { is odd }\end{cases}
$$

Remark 1.19. I won't define these groups precisely. Note there is a natural intersection bilinear form on $H^{n}(X, \mathbf{Z})$, which is preserved by the monodromy action. The bilinear form is symmetric when n is even and alternating when n is odd. This explains the O and the Sp.
Moreover, in the case n is even, the hyperplane class $h^{n / 2}$ is a monodromy invariant of $\mathrm{H}^{n}(X, \mathbf{Z})$. It follows that there is a representation:

$$
\pi_{1}(U(d, n)) \rightarrow \operatorname{Aut}\left(\mathrm{H}^{n}(X, \mathbf{Z})_{\text {prim }}\right),
$$

and $\widetilde{O}^{+}\left(\mathrm{H}^{n}(X, \mathbf{Z})\right)$ is a finite index subgroup of $O\left(\mathrm{H}^{n}(X, \mathbf{Z})_{\text {prim }}\right)$. (In fact, $\mathrm{H}^{n}(X, \mathbf{Z}) \not \not \not \mathrm{H}^{n}(X, \mathbf{Z})_{\text {prim }} \oplus \mathbf{Z} h^{n / 2}$ as lattices, and this accounts - to some extent - for why it is only a finite index subgroup.)
In the caes n is odd, there is a \mathbf{Z}_{2}-valued quadratic form (Kervaire invariant?) in the picture, and that is the reason for the O.

Big points in the Proof of Theorem. We proceed in a few steps:
(1) First show that for a Lefschetz pencil $\mathbf{P}^{1} \subseteq \mathbf{P}^{N(n, d)}$ with singularities $\Sigma \subseteq \mathbf{P}^{1}$, the mapping:

$$
\pi\left(\mathbf{P}^{1} \backslash \Sigma\right) \rightarrow \pi_{1}(U(n, d))
$$

So the monodromy group of $U(n, d)$ is the same as the monodromy group of the Lefschetz pencil.
(2) The punchline here is that (for hypersufaces) the primitive cohomology is generated by the vanishing spheres. In a sentence, this is an application of Morse Theory / the Lefschetz theorems.
(3) Presumably, then some computation is necessary. I do not know the details of this computation. I assume it is proved that the simple loops from the Lefschetz pencil generate these groups directly (by explicitly describing these groups).

Theorem 1.20. The monodromy representation

$$
\Gamma(d, n) \rightarrow \operatorname{Aut}\left(\mathrm{H}^{n}(X, \mathbf{Q})_{\text {prim }}\right)
$$

is irreducible.
Proof. Again we consider the case of a Lefschetz pencil. We need a couple of facts. First the pairing on $\mathrm{H}^{n}(X, \mathbf{Q})_{\text {prim }}$ is non-degenerate and second the vanishing spheres δ_{i} generate the primitive cohomology.
Suppose that $F \subseteq \mathrm{H}^{n}(X, \mathbf{Q})_{\text {prim }}$ is a non-zero subrepresentation. Let $\alpha \in F$ be any vector. Then for the loop $\gamma_{i} \in \pi_{1}\left(\mathbf{P}^{1} \backslash \Sigma\right)$ we have:

$$
\rho\left(\gamma_{i}\right)(\alpha)=\alpha \pm\left\langle\alpha, \delta_{i}\right\rangle \delta_{i} .
$$

There exists some δ_{i} such that $\left\langle\alpha, \delta_{i}\right\rangle \neq 0$. So:

$$
\pm\left\langle\alpha, \delta_{i}\right\rangle \delta_{i}=\alpha-\rho\left(\gamma_{i}\right)(\alpha) \in F\left(\Longrightarrow \delta_{i} \in F\right)
$$

Now we want to show that the monodromy action acts transitively on the vanishing spheres, at least up to sign. More globally, a vanishing sphere can be constructed as follows. Let $0 \in U(d, n)$ be a marked point in the space of smooth hypersurfaces.
(1) Choose a point $y \in D(d, n)^{0}$ (the smooth locus of the discriminant divisor), and make a small normal disk $\Delta_{y} \subseteq \mathbf{P}^{N(d, n)}$ to $D(d, n)$ at y. Choose a point $y^{\prime} \in \Delta_{y}^{*}$.
(2) Choose a path γ from 0 to y^{\prime}.

Then we get a vanishing sphere by choosing a generator of the kernel of the composition:

$$
\mathrm{H}^{n}\left(X_{0}, \mathbf{Z}\right) \xrightarrow{\rho(\gamma)} \mathrm{H}^{n}\left(X_{y^{\prime}}, \mathbf{Z}\right) \simeq \mathrm{H}_{n}\left(X_{y^{\prime}}, \mathbf{Z}\right) \rightarrow \mathrm{H}_{n}\left(X_{\Delta_{y}}, \mathbf{Z}\right) .
$$

We can call such a vanishing sphere $\delta_{\gamma, y}$ (and let's denote the composition $\phi_{\gamma, y}$). Note that all vanishing spheres arise this way.
First, different choices of paths (up to homotopy) differ by pre-composing with an element in $\gamma^{\prime} \in \pi_{1}(U(d, n))$. The vanishing sphere obtained by this different vector is given by a generator of the kernel of the map $\phi_{\gamma, y} \circ \rho\left(\gamma^{\prime}\right)$. Thus:

$$
\delta_{\gamma \circ \gamma^{\prime}, y}=\rho\left(\gamma^{\prime-1}\right) \circ \delta_{\gamma, y} .
$$

So we see that monodromy can be used to transport one vanishing sphere at y to another.

Finally, we must consider what happens when we choose a different point $z \in D(d, n)^{0}$ and ANY path $0 \rightarrow z^{\prime}$. Now $D(d, n)^{0}$ is irreducible, so we choose a path $\gamma_{y \rightarrow z} \in D(d, n)^{0}$ from $y \rightarrow z$ and we may make a tubular neighborhood and use it to construct a path $\gamma: y^{\prime} \rightarrow z^{\prime}$.

The claim is that

$$
\operatorname{ker}\left(\phi_{\gamma, y}\right)=\operatorname{ker}\left(\phi_{\left(\gamma_{y^{\prime} \rightarrow z^{\prime}} \circ \gamma\right), z}\right)
$$

which shows $\delta_{\gamma, y}=\delta_{\gamma_{y^{\prime} \rightarrow z^{\prime}} \circ \gamma, z}$.
Remark 1.21. In the case of cubic surfaces, we have $\mathrm{H}^{2}(X, \mathbf{C})=\mathrm{H}^{1,1}(X)$. It follows by the Hodge index theorem that the primitive cohomology is a negative definite lattice. As a consequence, there are only finitely many automorphisms of the lattice: $H^{2}(X, \mathbf{Z})_{\text {prim }}$ (choose any basis $\left\{\beta_{i}\right\}$, there are only finitely many elements $\alpha \in H^{2}(X, \mathbf{Z})_{\text {prim }}$ with

$$
\left.|\langle\alpha, \alpha\rangle|<\max \left\{\left|\left\langle\beta_{i}, \beta_{i}\right\rangle\right|\right\}\right) .
$$

This shows that $\Gamma(3,2)$ is finite, and in fact $\Gamma(3,2)=W\left(E_{6}\right)$!
Exercise 2. In the case $n=0$ and $d=3$, prove that the monodromy group of the family $X_{U(3,0)} \rightarrow U(3,0) \subseteq \mathbf{P}^{3}$ is \mathfrak{S}_{3}. The discriminant locus $D(3,0) \subseteq \mathbf{P}^{3}$ is singular along a curve. What is this curve (and prove your answer)?

References

[Huy23] Daniel Huybrechts. The geometry of cubic hypersurfaces, volume 206 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2023.
[Voi03] Claire Voisin. Hodge Theory and Complex Algebraic Geometry II, volume 2 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2003.

